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NOMENCLATURE 

black body steradiancy, aT4/n; 
defined by equation (14) ; 
defined by equation (13) ; 
frequency integrated specific intensity ; 
nth angular moment of the specific intensity; 
frequency integrated source function ; 
outward normal to a surface ; 
heat flux ; 
distance along a surface ; 
temperature ; 
mean absorption coefficient, equation (4); 
mean emission coefficient, equation (3) ; 
nth tensor moment of a,, equation (5); 
emissivity ; 
optical depth, equation (10); 
temperature slip coefficient, equation (29); 
Bouguer number, a,/ ; 
heat flux potential, equation (7). 

FORMULATION OF CONSISTENT ONE 
DIMENSIONAL BOUNDARY CONDITIONS 

THE LOWEST order full-range differential formulation of 
RGD which yields both the correct optically thick and 
emission dominated limits is governed by the following 
equations if the speed of light is much larger than any 
velocity scale of interest [l-3]. 

div c(T = r,{4n d J - aco)I,} e 11 (1) 

grad (I,) = -3r,ab”$ (2) 

where the heat flux, 5 fist moment of the specific intensity, 
I,, and integrated source function, J, are normalized by the 
reference emission level, aT4,. All lengths are normalized by 
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the dimension of the physical region of interest, 1, and 
absorption coefficients by an absorption level, a,. The 
emission coefficient, 

a, = 7 a, J, dv/J, J = 7 Jvdv (3) 

is merely the Planck mean if the medium is in local thermo- 
dynamic equilibrium (LTE). 

The absorption coefficients aLo) and ai” are the first 
two tensor moments of the general absorption coefficient 
a,,@,); t) and are discussed elsewhere [3]. If fi is the unit 
vector in the direction of propagation and 52” is interpreted 
as a general tensor of order n, then if 

a,@,;, t) = 7 a,I&k < t) dv/I, I=yI,dv (4) 

where I, is the spectral specific intensity, it follows that 

(5) 

where 

(6) 

The consistent inclusion of ai’) and aL1) has the same effect 
upon the governing equations that anisotropic scattering 
would. 

Mark overcame the ambiguity in the choice of boundary 
conditions for black surfaces in one-dimensional situations 
by considering the surfam to emit as a gas and matching 
moments at the interface [4]. The procedure may be genera- 
lized as follows. Consider first an infinite expanse in which 
there are initially no material boundaries, but in which the 
temperature and pressure fields may be nonuniform. A heat 
flux potential similar to that used by Cohen [S] and Traugott 
[6] may be defined 

P=$grad6 
Equation (2) requires that 

I, = -35,+ (8) 
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so that equation (1) becomes 

- 3r~#‘) 4 = ~zT,~,J. (9) 

In a one-dimensional situation the appropriate optical 
variable is 

rl =6, J[ai”!r, 0 ab”(r. 01 dr’ (10) 

where the parameter R(t) is introduced for reasons which will 
soon be apparent. Equation (9) may be written in the form 

where f m (J3). 7,~ and j = 0, 1, or 2 for planar, cylindrical, 
or spherically symmetric cases respectively. 

Symmetry requires that 4 -+ 0 as T + 0. Since the flux 
must also vanish far from the source of the disturbance, 
equation (11) may be transformed into the following integral 
equation. 

where fj, = -ij(r = 0) and, 

cash (4’ + 

cash (ij + 

ti,) exp C -(f 

ii,) exp [ -(ii’ 

(12) 

Suppose that the gas contained within 0 < r < R (or an 
isolated slab -R < r C R in the planar case) is maintained 
isothermal, that it is separated from its surroundings by a 
fictitious membrane, and that the absorption properties 
therein and temperature, PI’,‘, are at one’s disposal. If all 
incident radiation is to be absorbed by the isolated gas, 
a, -+ a:“) --+ ail) + co therein, and 

L&I) = 2WT,) exp [ -(J3) 7nl 

m 

exp[- (,/3)7,Itl - v’ll~,h’)W 
0 

(15) 

(1) aa J( > F 4(q) = $ B(L) exp [ - (J3) T,vl 
I 

+z w(rl -rl')expC-(J3)~,Itl- tl'll~,M)dtl' (16) I 
0 

It follows that at the surface, r = R(t) 

IO,_ + B = T’/z (17) 

which is Mark’s boundary condition for a black wall. 
A diffusely reflecting surface is easily simulated either 

by assuming the isolated volume to be void or imposing the 
condition that there can be no flux into the surface. The 
result is 

f&) = r,(J3) ii cash [(J3) r,tl’l exp [ -(J3) ~‘1 F,W dtl’ 

+ i cash [(J3) WI exp L-(43) ~‘1 F,W) dtl’} (18) 
‘I 

cash [(J3) ~$1 exp [- (J3) WI 

0 
n 

x Fitl’) d$ - 
c sinh [(,/3) ~1 exp 1 - L/3) r,tl’l 
J 
‘I 

x F,h’) W (19) 

Analogous to energy accommodation in kinetic theory, it 
is postulated that the linearity of equation (1) and (2) in 
I, and 4 may be used to state that 

where e is the emissivity of the surface. It will be shown that 
the analogy is precise, and the result is 

I,_ + i’T’),/($$)qw = ‘WTJ (21) 

+(+,(\/3)j exp [ - (J3) 7~1’1 Fjl q’) dq’. (22) 

0 

Equation (21) may be derived if one considers the half-range 
intensities to be discrete streams 

I’*’ = I, * 
3ai" J( 1 abo’q 

so that at the surface 

I’+’ = t, 4nB(T,) + (1 - t) I’-‘. (24) 

The result is that which Cess [7] derived without noting 
that it is a direct consequence of the physical restrictions 
imposed by the differential approximation. The average 
direction cosine of the propagation vector, ,/(ai”)/3aF)), 
is weighted by the anisotropy of the situation. Equation 
(22), which is particularly useful in iterative schemes [S], 
could not be obtained in this manner. 

In the planar case the exact formulation in a quasi- 
isotropic (a:‘) = ai” = a,) gas leads to 
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2-C 
IO_ + ( > - cq, = 27KB(T,) K(d) 

t cc 

+ 2(2 - c) z, 
s 

R 2 {E,(r,$) - CE,(z,a’)} d$ (25) 

0 

2--L 
K(K(E) = &(O) -I- c ___ 

( ) 
E3(0) 

c 

where C is an arbitrary function of time and E,(x), n = 1,2,3 
are exponential integrals. Equations (21) and (22) are con- 
sistent with the substitution E,(x) = exp [-(,/3)x] [9] in 
which case C = (43) will remove the integral from equation 
(25) if the recursion relations among the E,(x) are employed. 
The commonly used Marshak boundary condition is a 
consequence of the substitution E2(x) = em*=, C = 2, and 
is consistent ouly with a forward-reverse (PO half-range) 
approximation [lo] which leads to an erroneous optically 
thick limit. It has been demonstrated [S] that when absorp- 
tion of shock layer radiation by the upstream gas is included 
in problems of RGD which are investigated with equation 
(1) and (2) only a Mark-type emission condition in the 
free stream avoids divergence from radiative equilibrium. 
Furthermore, only equation (21) yields nearly correct 
heat fluxes at general surfaces [S, 11-j. Thus only the Mark 
condition can be reco~end~ for use in RGD. 

BOUNDARY CONDITIONS FOR GENERAL 
GEOMETRIES 

The principles outlined for one-dimensional fields in the 
previous section may be applied to the derivation of boundary 
conditions in any situation. For example, in a two- 
dimensional field in which the surface of interest has a 
radius of curvature R(s) the governing equations are 

(&--12 + $ (&.?)I = r,{47zad - njpii,)(26a) 

R al, __- = 
R+nas 

- 3t,a$q I WW 

a10 
- = - 37,a~‘)g 
an 

n (2W 

where n and s are coordinates normal to and along the 
surface. if # is defined as before it may be shown that 

3x4 
@ - 4 = F(s, ii) (27a) 

where 

ij = (43) zi a J[ui’)(s, n’) aii$s, n’)] dn’ and, 

47ra, 
F(s, g) = - 

3riai’) ’ 

-$~~[~~g/($)) +(R + n);(a~“)ail)] 

R 

+ a(‘YR + n) e 

65.5 

(27b) 

The division of terms between the left- and right-hand sides 
of equation (27a) is at our disposal as long as the terms 
retained on the left are sufficient to allow satisfaction of 
boundary conditions far from the disturbance and those on 
the right can be manipulated within the isolated gas with 
physically reasonable assumptions about its absorption 
properties. Only by concentrating on the normal direction 
can one satisfy both requirements. Note that because the 
absorption coefficients vary with both n and s the tangential 
flux is given by 

The flux normal to the surface is still related only to a#/@, 
and both diffusely reflecting and black surfaces may be 
constructed as before. The one-dimensional Green’s function 
is still appropriate, and we find that 

Davison [4] has conjectured that since the interaction of 
radiation with material boundaries is a local phenomenon, 
its mathematical statement should be independent of 
geometry. It is clear from equation (28) that this is so. 

OPTICALLY THICK SLIP CONDITIONS 

The analogy between radiative transfer in the Rosseland 
limit and molecular conduction has long been recognized. 
Probstein et al. {12, 131 have sought expressions for the 
temperature slip in the form common in molecular gas- 
dynamics 

T(0) - T, = & . grad (7’) (29) 

where I’(0) is the temperature of the gas at the wall, and the 
slip coefficient, K, was determined from matching with an 
optically thin result before catastrophy occurred in the 
thick limit. A consistent expression for K may be derived 
from the general boundary condition of the form of equation 
(21). 

If rr B 1 methods similar to those employed by Cess [l] 
lead to 
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where 0~~ is the Rosseland mean absorption coefficient. 
The expression derived by Cess applies only to planar sur- 
faces and relies upon Cheng’s application of the Marshak 
condition. Both Cess’ and Deissler’s [14] versions of 
equation (31) apply only if the gas has constant absorption 
coefficients. Equation (31) is not so restricted. 

Since the gas temperature at the wall differs little from 
T, in this limit, it follows that 

7;,, - T, z C (32) 

from which the slip coefficient may be identified. 
2-c c, 

lC= ( >. t 3% 
(33) 

Since this is exactly the form which applies in kinetic 
theory, the analogy of emissivity with thermal accommo- 
dation coefficients is further confirmed. For a black wall and 
Marshak’s condition, Ci = 2, equation (33) is identically 
Probstein’s result. The agreement of his prediction with that 
of a Pi-approximation to which Marshak’s boundary 
condition was applied is thus to be expected. Temperature 
slip is always present in RGD when molecular transport 
phenomena are ignored; thus no special treatment is 
necessary if one is consistent in the use of equation (21). 

CONCLUSIONS 

The Mark boundary condition of neutron transport 
theory may be extended to non-black surfaces by a method 
of images. The method is restricted neither to grey, non- 
scattering gases nor to LTE and may be applied to general 
geometries. Only the Mark condition is consistent both with 
the governing equations and with the physical restrictions 
imposed by the differential approximation. It has been 
noted that temperature jump conditions in the Rosseland 
limit are a consistent result of more general interactions of 

radiation with material boundaries in completely general 
situations. Finally, a definite relationship between the con- 
cepts of emissivity and thermal accommodation coefficient 
has been noted. 
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MORE ON GENERALIZING THE DEFINITIONS OF “HEXI-” AND “JWl-ROI’y” 
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NOMENCLATURE 

Ci, concentration of species i, per unit volume ; 
ep9 a tfimP.camposition; 
d specific energy ; 

t Currently Battelle Institute visiting Fellow, Columbus, 
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8, specific enthalpy ; 
Hi partial enthalpy for species i ; 
J,> flux of i relative to v ; 
P. pressure; 

43 E - lJ.n; 

Q? net energy addition to system by heat transports; 


